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Synonyms

Bias-variance trade-offs, bias plus variance.

Definition

Consider a given random variable F and a random variable that we can modify, F̂ . We wish to use a
sample of F̂ as an estimate of a sample of F . The mean squared error between such a pair of samples is a
sum of four terms. The first term reflects the statistical coupling between F and F̂ and is conventionally
ignored in bias-variance analysis. The second term reflects the inherent noise in F and is independent
of the estimator F̂ . Accordingly, we cannot affect this term. In contrast, the third and fourth terms
depend on F̂ . The third term, called the bias, is independent of the precise samples of both F and
F̂ , and reflects the difference between the means of F and F̂ . The fourth term, called the variance, is
independent of the precise sample of F , and reflects the inherent noise in the estimator as one samples
it. These last two terms can be modified by changing the choice of the estimator. In particular, on small
sample sets, we can often decrease our mean squared error by, for instance, introducing a small bias that
causes a large reduction the variance. While most commonly used in statistics / machine learning, this
article shows that such bias-variance trade-offs are applicable in a much broader context and in a variety
of situations. We also show, using experiments, how techniques for optimizing bias-variance trade-offs
introduced in machine learning can be applied in novel circumstances to improve the performance of a
class of optimization algorithms.

Motivation and Background

In its simplest form, the bias-variance decomposition is based on the following idea. Say we have a
random variable F taking on values F distributed according to a density function p(F ). We want to
estimate the value of a sample from p(F ). To form our estimate, we sample a different random variable
F̂ taking on values F̂ distributed according to p(F̂ ). Assuming a quadratic loss function, the quality of
our estimate is measured by its Mean Squared Error (MSE):

MSE(F̂ ) ≡
∫

p(F̂ , F ) (F̂ − F )2dF̂dF.

In many situations, F and F̂ are dependent variables. For example, in supervised machine learning,
F is a ‘target’ conditional distribution, stochastically mapping elements of an input space X into a space
Y of output variables. The associated distribution p(F ) is the ‘prior’ of F . A random sample D of F ,
called ‘the training set’, is generated, and D is used in a ‘learning algorithm’ to produce F̂ , which is our
estimate of the value of a new sample of F . Clearly, this F and F̂ are statistically dependent, via D.
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Indeed, intuitively speaking, the goal in designing a learning algorithm is that the F̂ ’s it produces are
positively correlated with F ’s.

In practice this coupling is simply ignored in analyses of bias plus variance, without any justification
(one such justification could be that the coupling has little effect on the value of the MSE). We shall
follow that practice here, treating F̂ and F as independent random variables. Accordingly, our equation
for MSE reduces to

MSE(F̂ ) =
∫

p(F̂ )p(F ) (F̂ − F )2dF̂dF. (1)

If we were to account for the coupling of F̂ and F̂ an additive correction term would need to be added
to the right-hand side. For instance, see Wolpert [1997].

Using simple algebra, the right hand side of Eq. 1 can be written as the sum of three terms. The
first is the variance of F . Since this is beyond our control in designing the estimator F̂ , we ignore it for
the rest of this article. The second term involves a mean that describes the deterministic component of
the error. This term depends on both the distribution of F and that of F̂ , and quantifies how close the
means of those distributions are. The third term is a variance that describes stochastic variations from
one sample to the next. This term is independent of the random variable being estimated. Formally, up
to an overall additive constant, we can write

MSE(F̂ ) =
∫

p(F̂ )(F̂ 2 − 2FF̂ + F 2)dF̂ ,

=
∫

p(F̂ )F̂ 2dF̂ − 2F

∫
p(F̂ )F̂ dF̂ + F 2,

=
︷ ︸︸ ︷
V(F̂ ) + [E(F̂ )]2−2F E(F̂ ) + F 2,

= V(F̂ ) + [F − E(F̂ )]2︸ ︷︷ ︸,

= variance + bias2. (2)

In light of Eq. 2, one way to try to reduce expected quadratic error is to modify an estimator to
trade-off bias and variance. Some of the most famous applications of such bias-variance trade-offs occur
in parametric machine learning, where many techniques have been developed to exploit the trade-off.
Nonetheless, the trade-off also arises in many other fields, including integral estimation and optimization.
In the rest of this paper we present a few novel applications of bias-variance trade-off, and describe some
interesting features in each case. A recurring theme is the following: whenever a bias-variance trade-off
arises in a particular field, we can use many techniques from parametric machine learning that have been
developed for exploiting this trade-off. See Wolpert and Rajnarayan [2007] for further details of many
of these applications.

Applications

In this section, we describe some bias-variance tradeoffs. First, we describe Monte Carlo (MC) techniques
for the estimation of integrals, and provide a brief analysis of bias-variance trade-offs in this context.
Next, we introduce the field of Monte Carlo Optimization (MCO), and illustrate that it involves more
subtleties than does simple MC. Then, we describe the field of Parametric Machine Learning, which, as
we show, is a special case of MCO. Finally, we describe the application of Parametric Learning (PL)
techniques to improve the performance of MCO algorithms. We do this in the context of an MCO
problem that addresses black-box optimization.
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Monte Carlo Estimation of Integrals Using Importance Sampling

Monte Carlo methods are often the method of choice for estimating difficult high-dimensional integrals.
Consider a function f : X → R, which we want to integrate over some region X ⊆ X, yielding the value
F , as given by

F =
∫

X
dx f(x).

We can view this as a random variable F , with density function given by a Dirac delta function centered
on F . Therefore, the variance of F is 0, and Eq. 2 is exact.

A popular MC method to estimate this integral is importance sampling [see Robert and Casella,
2004]. This exploits the law of large numbers as follows: i.i.d. samples x(i), i = 1, . . . ,m are generated
from a so-called importance distribution h(x) that we control, and the associated values of the integrand,
f(x(i)) are computed. Denote these ‘data’ by

D = {(x(i), f(x(i)), i = 1, . . . ,m}. (3)

Now,

F =
∫

X
dx h(x)

f(x)
h(x)

,

= lim
m→∞

1
m

m∑

i=1

f(x(i))
h(x(i))

with probability 1.

Denote by F̂ the random variable with value given by the sample average for D:

F̂ =
1
m

m∑

i=1

f(x(i))
h(x(i))

.

We use F̂ as our statistical estimator for F , as we broadly described in the introductory section. Assum-
ing a quadratic loss function, L(F̂ , F ) = (F − F̂ )2, the bias-variance decomposition described in Eq. 2
applies exactly. It can be shown that the estimator F̂ is unbiased, that is, E(F̂ ) = F , where the mean is
over samples of h. Consequently, the MSE of this estimator is just its variance. The choice of sampling
distribution h that minimizes this variance is given by [see Robert and Casella, 2004]

h!(x) =
|f(x)|∫

X |f(x′)|dx′
.

By itself, this result is not very helpful, since the equation for the optimal importance distribution
contains a similar integral to the one we are trying to estimate. For non-negative integrands f(x), the
VEGAS algorithm [Lepage, 1978] describes an adaptive method to find successively better importance
distributions, by iteratively estimating F , and then using that estimate to generate the next importance
distribution h. In the case of these unbiased estimators, there is no trade-off between bias and variance,
and minimizing MSE is achieved by minimizing variance.

Monte Carlo Optimization

Instead of a fixed integral to evaluate, consider a parametrized integral

F (θ) =
∫

X
dx fθ(x).

Further, suppose we are interested in finding the value of the parameter θ ∈ Θ that minimizes F (θ):

θ! = arg min
θ∈Θ

F (θ).
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In the case where the functional form of fθ is not explicitly known, one approach to solve this problem is a
technique called Monte Carlo Optimization (MCO) [see Ermoliev and Norkin, 1998], involving repeated
MC estimation of the integral in question with adaptive modification of the parameter θ.

We proceed by analogy to the case with MC. First, we introduce the θ-indexed random variable F (θ),
all of whose components have delta-function distributions about the associated values F (θ). Next, we
introduce a θ-indexed vector random variable F̂ with values

F̂ ≡ {F̂ (θ) ∀ θ ∈ Θ}. (4)

Each real-valued component F̂ (θ) can be sampled and viewed as an estimate of F (θ).
For example, let D be a data set as described in Eq. 3. Then for every θ, any sample of D provides

an associated estimate

F̂ (θ) =
1
m

m∑

i=1

fθ(x(i))
h(x(i))

.

That average serves as an estimate of F (θ). Formally, F̂ is a function of the random variable D, and is
given by such averaging over the elements of D. So, a sample of D provides a sample of F̂ . A priori,
we make no restrictions on F̂ , and so, in general, its components may be statistically coupled with one
another. Note that this coupling arises even though we are, for simplicity, treating each function F (θ)
as a delta function rather than as having a non-zero variance to reflect our lack of knowledge of the f(θ)
functions.

However F̂ is defined, given a sample of F̂ , one way to estimate θ! is

θ̂! = arg min
θ∈Θ

F̂ (θ)

We call this approach ‘natural’ MCO. As an example, say that D is a set of m samples of h, and let

F̂ (θ) ! 1
m

m∑

i=1

fθ(x(i))
h(x(i))

,

as above. Under this choice for F̂ ,

θ̂! = arg min
θ∈Θ

1
m

m∑

i=1

fθ(x(i))
h(x(i))

. (5)

We call this approach ‘naive’ MCO.
Consider any algorithm that estimates θ! as a single-valued function of F̂ . The estimate of θ!

produced by that algorithm is itself a random variable, since it is a function of the random variable F̂ .
Call this random variable θ̂

!
, taking on values θ̂!. Any MCO algorithm is defined by θ̂

!
; that random

variable encapsulates the output estimate made by the algorithm.
To analyze the error of such an algorithm, consider the associated random variable given by the

associated integral, F (θ̂
!
). The difference between a sample of F (θ̂

!
) and the true minimal value of the

integral, F (θ!) = minθ F (θ), is the error introduced by our estimating that optimal θ as a sample of
θ̂

!
. In light of this, since our aim in MCO is to minimize F (θ), we adopt the loss function L(θ̂

!
, θ!) !

F (θ̂
!
)−F (θ!). (This is in contrast to our discussion on MC integration, which involved quadratic loss.)

This loss function just equals F (θ̂
!
) up to an additive constant F (θ!) that is fixed by the MCO problem

at hand and is beyond our control. Up to that additive constant, the associated expected loss is

E(L) =
∫

dθ̂!p(θ̂!)F (θ̂!). (6)
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Now change coordinates in this integral from the values of the scalar random variable θ̂
!

to the values
of the underlying vector random variable F̂ . The expected loss now is written as

E(L) =
∫

dF̂ p(F̂ )F (θ̂!(F̂ )).

The natural MCO algorithm provides some insight into these results. For that algorithm,

E(L) =
∫

dF̂ p(F̂ )F (arg min
θ

F̂ (θ))

=
∫

dF̂ (θ1)dF̂ (θ2) . . . p(F̂ (θ1), F̂ (θ2), . . .)F (arg min
θ

F̂ (θ)). (7)

For any fixed θ, there is an error between samples of F̂ (θ) and the true value F (θ). Bias-variance
considerations apply to this error, exacty as in the discussion of MC above.

We are not, however, concerned with F̂ for a single component θ, but rather for a set Θ of θ’s.
The simplest such case is where the components of F̂ are independent. For this case, arg minθ F̂ (θ) is
distributed according to the laws for extrema of multiple independent random variables. This distribution
depends on moments of all orders of each random variable F̂ (θ). This means that E[L] also depends on
moments of all orders. However only the first two moments contribute to the bias and variance for any
single θ. Thus, even in the simplest possible case, the bias-variance considerations for the individual θ
do not provide a complete analysis.

In most cases, the components of F̂ are not independent. Therefore, in order to analyze E[L], in
addition to higher moments of the distribution for each θ, we must now also consider higher-order
moments coupling the estimates F̂ (θ) for different θ, e.g., covariances.

Due to these effects, it may be quite acceptable for all the components F̂ (θ) to have both a large bias
and a large variance, as long as they still order the θ’s correctly with respect to the true F (θ). In such
a situation, large covariances could ensure that if some F̂ (θ) were incorrectly large, then F̂ (θ′), θ′ '= θ
would also be incorrectly large. This coupling between the components of F̂ would preserve the ordering
of θ’s under F . So, even with large bias and variance for each θ, the estimator as a whole would still
work well.

Nevertheless, it is sufficient to design estimators F̂ (θ) with sufficiently small bias plus variance
for each single θ. More precisely, suppose that those terms are very small on the scale of differences
F (θ) − F (θ′) for any θ and θ′. Then by Chebychev’s inequality, we know that the density functions of
the random variables F̂ (θ) and F̂ (θ′) have almost no overlap. Accordingly, the probability that a sample
of F̂ (θ)− F̂ (θ′) has the opposite sign of F (θ)− F (θ′) is almost zero.

Evidently, E[L] is generally determined by a complicated relationship involving bias, variance, co-
variance, and higher moments. Natural MCO in general, and naive MCO in particular, ignore all of
these effects, and consequently, often perform quite poorly in practice. In the next section we discuss
some ways of addressing this problem.

Parametric Machine Learning

There are many versions of the basic MCO problem described in the previous section. Some of the
best-explored arise in parametric density estimation and parametric supervised learning, which together
comprise the field of Parametric machine Learning (PL).

In particular, parametric supervised learning attempts to solve

arg min
θ∈Θ

∫
dx p(x)

∫
dy p(y | x)fθ(x).

Here, the values x represent inputs, and the values y represent corresponding outputs, generated ac-
cording to some stochastic process defined by a set of conditional distributions {p(y | x), x ∈ X}.
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Typically, one tries to solve this problem by casting it as an MCO problem, For instance, say we adopt
a quadratic loss between a predictor zθ(x) and the true value of y. Using MCO notation, we can express
the associated supervised learning problem as finding arg minθ F (θ), where

lθ(x) =
∫

dy p(y | x) (zθ(x)− y)2,

fθ(x) = p(x) lθ(x),

F (θ) =
∫

dx fθ(x). (8)

Next, the argmin is estimated by minimizing a sample-based estimate of the F (θ)’s. More precisely,
we are given a ‘training set’ of samples of p(y | x) p(x), {(x(i), yi)i = 1, . . . ,m}. This training set provides
a set of associated estimates of F (θ):

F̂ (θ) =
1
m

m∑

i=1

lθ(x(i)).

These are used to estimate arg minθ F (θ), exactly as in MCO. In particular, one could estimate the
minimizer of F (θ) by finding the minimium of F̂ (θ), just as in natural MCO. As mentioned above, this
MCO algorithm can perform very poorly in practice. In PL, this poor performance is called ‘overfitting
the data’.

PL Techniques That Address Overfitting

There are several formal approaches that have been explored in PL to try to address this ‘overfitting
the data’. Interestingly, none are based on direct consideration of the random variable F (θ̂!(F̂ )) and
the ramifications of its distribution for expected loss (cf. Eq. 7). In particular, no work has applied the
mathematics of extrema of multiple random variables to analyze the bias-variance-covariance trade-offs
encapsulated in Eq. 7.

The PL approach that perhaps comes closest to such direct consideration of the distribution of
F (θ̂

!
) is uniform convergence theory, which is a central part of Computational Learning Theory [see

Angluin, 1992]. Uniform convergence theory starts by crudely encapsulating the quadratic loss formula
for expected loss under natural MCO, Eq. 7. It does this by considering the worst-case bound, over
possible p(x) and p(y | x), of the probability that F (θ!) exceeds minθ F (θ) by more than κ. It then
examines how that bound varies with κ. In particular, it relates such variation to characteristics of the
set of functions {fθ : θ ∈ Θ}, e.g., the ‘VC dimension’ of that set [see Vapnik, 1982, 1995].

Another, historically earlier approach, is to apply bias-plus-variance considerations to the entire PL
algorithm θ̂

!
, rather than to each F̂ (θ) separately. This approach is applicable for algorithms that do

not use natural MCO, and even for non-parametric supervised learning. As formulated for parameteric
supervised learning, this approach combines the formulas in Eq. 8 to write

F (θ) =
∫

dx dy p(x)p(y | x)(zθ(x)− y)2.

This is then substituted into Eq. 6, giving

E[L] =
∫

dθ̂!dx dy p(x) p(y | x) p(θ̂!)(zθ̂!(x)− y)2

=
∫

dx p(x)
[∫

dθ̂!dy p(x)p(y | x)p(θ̂!)(zθ̂!(x)− y)2
]

. (9)

The term in square brackets is an x-parameterized expected quadratic loss, which can be decomposed
into a bias, variance, etc., in the usual way.
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This formulation of E[L] eliminates any direct concern for issues like the distribution of extrema of
multiple random variables, covariances between F̂ (θ) and F̂ (θ′) for different values of θ, and so on. It
has been invoked to justify, and sometimes derive, many PL techniques that work well in practice. An
example is the technique of regularization, in which a data-independent penalty vector is added to the
vector F̂ . This penalty is known as the regularizer. When used with natural MCO, that regularizer
introduces an a priori preference for θ̂

!
to favor certain θ’s over others. This preference can be viewed

as a bias. The benefit of regularization is that it reduces variance; the hope is that the reduction in
variance outweighs the increase in bias.

Often the regularizer has a parameter that determines how strongly it distorts θ̂
!
. For example, there

is an overall multiplicative parameter that controls the penalty vector’s magnitude. Different values of
such a regularization parameter change the amount of introduced bias and variance. The technique of
cross-validation can be used to search for the optimal value of that parameter, i.e., the optimal trade-off
of bias and variance.

There are numerous other approaches for addressing the problems of natural MCO that have been
explored in PL. Particulary important among these are Bayesian approaches, e.g., Buntine and Weigend
[1991], Berger [1985], Mackay [2003]. Based on these approaches, as well as on intuition, many powerful
techniques for addressing data-overfitting have been explored in PL, going beyond regularization and
cross-validation, to include stacking, bagging, etc. Essentially all of these techniques can be applied to
any MCO problem, not just PL problems. Since many of these techniques can be justified using Eq. 9,
they provide a way to exploit the bias-variance trade-off in other domains besides PL.

PLMCO

In this section, we illustrate how PL techniques that exploit the bias-variance decomposition of Eq. 9 can
be used to improve an MCO algorithm used in a domain outside of PL. This MCO algorithm is a version
of adaptive importance sampling, somewhat similar to the CE method [Rubinstein and Kroese, 2004],
and is related to function smoothing on continuous spaces. The PL techniques described are applicable
to any other MCO problem, and this particular one is chosen just as an example.

MCO Problem Description

The problem is to find the θ-parameterized distribution qθ that minimizes the associated expected value
of a function G : Rn → R, i.e., find

arg min
θ

Eqθ [G].

We are interested in versions of this problem where we do not know the functional form of G, but can
obtain its value G(x) at any x ∈ X . Similarly we cannot assume that G is smooth, nor can we evaluate
its derivatives directly. This scenario arises in many fields, including blackbox optimization [see Wolpert
et al., 2006], and risk minimization [see Ermoliev and Norkin, 1998].

We begin by expressing this minimization problem as an MCO problem. We know that

Eqθ [G] =
∫

X
dx qθ(x)G(x)

Using MCO terminology, fθ(x) = qθ(x)G(x) and F (θ) = Eqθ [G]. To apply MCO, we must define a
vector-valued random variable F̂ with components indexed by θ, and then use a sample of F̂ to estimate
arg minθ Eqθ [G]. In particular, to apply naive MCO to estimate arg minθ Eqθ (G), we first i.i.d. sample a
density function h(x). By evaluating the associated values of G(x) we get a data set

D ≡ (DX ,DG)
= ({x(i) : i = 1, . . . ,m}, {G(x(i)) : i = 1, . . . ,m}).
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The associated estimates of F (θ) for each θ are

F̂ (θ) ! 1
m

m∑

i=1

qθ(x(i))G(x(i))
h(x(i))

. (10)

The associated naive MCO estimate of arg minθ Eqθ [G] is

θ̂! ≡ arg min
θ

F̂ (θ).

Suppose Θ includes all possible density functions over x’s. Then the qθ minimizing our estimate is a
delta function about the x(i) ∈ DX with the lowest associated value of G(x(i))/h(x(i)). This is clearly
a poor estimate in general; it suffers from ‘data-overfitting’. Proceeding as in PL, one way to address
this data-overfitting is to use regularization. In particular, we can use the entropic regularizer, given by
the negative of the Shannon entropy S(qθ). This changes the definition of F̂ from the function given in
Eq. 10 to

F̂ (θ) ! 1
m

m∑

i=1

β qθ(x(i))G(x(i))
h(x(i))

− S(qθ).

where β is the inverse of the regularization parameter controlling the magnitude of the penalty term
S(qθ).

Solution Methodology

Unfortunately, it can be difficult to find the θ globally minimizing this new F̂ for an arbitrary D. An
alternative is to find a close approximation to that optimal θ. One way to do this is as follows. First,
we find the minimizer of

1
m

m∑

i=1

β p(x(i))G(x(i))
h(x(i))

− S(p) (11)

over the set of all possible distributions p(x) with domain X . We then find the qθ that has minimal
Kullback-Leibler (KL) divergence from this p, evaluated over DX . That serves as our approximation to
arg minθ F̂ (θ), and therefore as our estimate of the θ that minimizes Eqθ (G).

The minimizer p of Eq. 11 can be found in closed form; over DX it is the Boltzmann distribution
pβ(x(i)) ∝ exp(−β G(x(i))). The KL divergence in DX from this Boltzmann distribution to qθ is

F (θ) = KL(pβ‖qθ) =
∫

DX
dx pβ(x) log

(
pβ(x)
qθ(x)

)
.

The minimizer of this KL divergence is given by

θ† = arg min
θ

[
−

m∑

i=1

exp(−βG(x(i)))
h(x(i))

log(qθ(x(i)))

]
. (12)

This approach is an approximation to a regularized version of the naive MCO estimate of the θ that
minimizes Eqθ (G). The application of the technique of regularization in this context has the same
motivation as it does in PL: to reduce bias plus variance.

Log-concave Densities

If qθ is log-concave in its parameters θ, then the minimization problem in Eq. 12 is a convex optimization
problem, and the optimal parameters can be found closed-form. Denote the likelihood ratios by s(i) =
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exp(−βG(x(i)))/h(x(i)). Differentiating Eq. 12 with respect to the parameters µ and Σ−1 and setting
them to zero yields

µ! =
∑

D s(i)x(i)

∑
D s(i)

Σ! =
∑

D s(i)(x(i) − µ!)(x(i) − µ!)T

∑
D s(i)

Mixture Models

The single Gaussian is a fairly restrictive class of models. Mixture models can significantly improve
flexibility, but at the cost of convexity of the KL distance minimization problem. However, a plethora of
techniques from supervized learning, in particular the Expectation Maximization (EM) algorithm, can
be applied with minor modifications.

Suppose qθ is a mixture of M Gaussians, that is, θ = (µ, Σ,φ) where φ is the mixing p.m.f, we can
view the problem as one where a hidden variable z decides which mixture component each sample is
drawn from. We then have the optimization problem

minimize −
∑

D

p(x(i))
h(x(i))

log
(
qθ(x(i), z(i))

)
.

Following the standard EM procedure, we get the algorithm described in Eq. 13. Since this is a nonconvex
problem, one typically runs the algorithm multiple times with random initializations of the parameters.

E-step: For each i, set Qi(z(i)) = p(z(i)|x(i)),
that is, w(i)

j = qµ,Σ,φ(z(i) = j|x(i)), j = 1, . . . ,M.

M-step: Set µj =
P
D w(i)

j s(i) x(i)

P
D w(i)

j s(i) ,

Σj =
P
D w(i)

j s(i) (x(i) − µj)(x(i) − µj)T

P
D w(i)

j s(i)
,

φj =
P
D w(i)

j s(i)
P
D s(i) ,

(13)

Test Problems

To compare the performance of this algorithm with and without the use of PL techniques, we use a
couple of very simple academic problems in two and four dimensions - the Rosenbrock function in two
dimensions, given by

GR(x) = 100(x2 − x2
1)

2 + (1− x1)2,

and the Woods function in four dimensions, given by given by

Gwoods(x) = 100(x2 − x1)2 + (1− x1)2 + 90(x4 − x2
3)

2 + (1− x3)2

+10.1[(1− x2)2 + (1− x4)2] + 19.8(1− x2)(1− x4).

For the Rosenbrock, the optimum value of 0 is achieved at x = (1, 1), and for the Woods problem, the
optimum value of 0 is achieved at x = (1, 1, 1, 1).

Application of PL Techniques

As mentioned above, there are many PL techniques beyond regularization that are designed to optimize
the trade-off between bias and variance. So having cast the solution of arg minqθ E(G) as an MCO
problem, we can apply those other PL techniques instead of (or in addition to) entropic regularization.
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This should improve the performance of our MCO algorithm, for the exact same reason that using those
techniques to trade off bias and variance improves performance in PL. We briefly mention some of those
alternative techniques here.

The overall MCO algorithm is broadly described in Alg. 1. For the Woods problem, 20 samples of
x are drawn from the updated qθ at each iteration, and for the Rosenbrock, 10 samples. For comparing
various methods and plotting purposes, 1000 samples of G(x) are drawn to evaluate Eqθ [G(x)]. Note: in
an actual optimization, we will not be drawing these test samples! All the performance results in Fig. 1
are based on 50 runs of the PC algorithm, randomly initialized each time. The sample mean performance
across these runs is plotted along with 95% confidence intervals for this sample mean (shaded regions).

Algorithm 1 Overview of pq minimization using Gaussian mixtures
1: Draw uniform random samples on X
2: Initialize regularization parameter β
3: Compute G(x) values for those samples
4: repeat
5: Find a mixture distribution qθ to minimize sampled pq KL distance
6: Sample from qθ

7: Compute G(x) for those samples
8: Update β
9: until Termination

10: Sample final qθ to get solution(s).

Cross-validation for Regularization: We note that we are using regularization to reduce variance,
but that regularization introduces bias. As is done in PL, we use standard k-fold cross-validation to
tradeoff this bias and variance. We do this by partitioning the data into k disjoint sets. The held-out
data for the ith fold is just the ith partition, and the held-in data is the union of all other partitions.
First, we ‘train’ the regularized algorithm on the held-in data Dt to get an optimal set of parameters θ!,
then ‘test’ this θ! by considering unregularized performance on the held-out data Dv. In our context,
‘training’ refers to finding optimal parameters by KL distance minimization using the held-in data, and
‘testing’ refers to estimating Eqθ [G(x)] on the held-out data using the following formula [Robert and
Casella, 2004].

ĝ(θ) =

∑

Dv

qθ(x(i))G(x(i))
h(x(i))

∑

Dv

qθ(x(i))
h(x(i))

.

We do this for several values of the regularization parameter β in the interval k1β < β < k2β, and
choose the one that yield the best held-out performance, averaged over all folds. For our experiments,
k1 = 0.5, k2 = 3, and we use 5 equally-spaced values in this interval. Having found the best regularization
parameter in this range, we then use all the data to minimize KL distance using this optimal value of β.
Note that all cross-validation is done without any additional evaluations of G(x). Cross-validation for β
in PC is similar to optimizing the annealing schedule in simulated annealing. This ‘auto-annealing’ is
seen in Fig. 1.a, which shows the variation of β with iterations of the Rosenbrock problem. It can be
seen that β value sometimes decreases from one iteration to the next. This can never happen in any kind
of ‘geometric annealing schedule’, β ← kββ, kβ > 1, of the sort that is often used in most algorithms
in the literature. In fact, we ran 50 trials of this algorithm on the Rosenbrock and then computed a
best-fit geometric variation for β, that is, a nonlinear least squares fit to variation of β, and a linear least
squares fit to the variation of log(β). These are shown in Figs. 1.c. and 1.d. As can be seen, neither is a
very good fit. We then ran 50 trials of the algorithm with the fixed update rule obtained by best-fit to
log(β), and found that the adaptive setting of β using cross-validation performed an order of magnitude
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Figure 1: Various PL Techniques Improve MCO performance.
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better, as shown in Fig. 1.e.
Cross-validation for Model Selection: Given a set Θ (sometimes called a model class) to choose
θ from, we can find an optimal θ ∈ Θ. But how do we choose the set Θ? In PL, this is done using
cross-validation. We choose that set Θ such that arg minθ∈Θ F̂ (θ) has the best held-out performance.
As before, we use that model class Θ that yields the lowest estimate of Eqθ [G(x)] on the held-out data.
We demonstrate the use of this PL technique for minimizing the Rosenbrock problem, which has a
long curved valley that is poorly approximated by a single Gaussian. We use cross-validation to choose
between a Gaussian mixture with up to 4 components. The improvement in performance is shown in
Fig. 1.d.
Bagging: In bagging Breiman [1996a], we generate multiple data sets by resampling the given data
set with replacement. These new data sets will, in general, contain replicates. We ‘train’ the learning
algorithm on each of these resampled data sets, and average the results. In our case, we average the
qθ got by our KL divergence minimization on each data set. PC works even on stochastic objective
functions, and on the noisy Rosenbrock, we implemented PC with bagging by resampling 10 times, and
obtained significant performance gains, as seen in Fig. 1.g.
Stacking: In bagging, we combine estimates of the same learning algorithm on different data sets
generated by resampling, whereas in stacking Breiman [1996b], Smyth and Wolpert [1999], we combine
estimates of different learning algorithms on the same data set. These combined estimated are often
better than any of the single estimates. In our case, we combine the qθ obtained from our KL divergence
minimization algorithm using multiple models Θ. Again, Fig. 1.h shows that cross-validation for model
selection performs better than a single model, and stacking performs slightly better than cross-validation.

Conclusions

The conventional goal of reducing bias plus variance has interesting applications in a variety of fields. In
straightforward applications, the bias-variance trade-offs can decrease the MSE of estimators, reduce the
generalization error of learning algorithms, and so on. In this article, we described a novel application of
bias-variance trade-offs: we placed bias-variance trade-offs in the context of Monte Carlo Optimization,
and discussed the need for higher moments in the trade-off, such as a bias-variance-covariance trade-off.
We also showed a way of applying just a bias-variance trade-off, as used in Parametric Learning, to
improve the performance of Monte Carlo Optimization algorithms.
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